# Copyright 2022 - 2026 The PyMC Labs Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Regression discontinuity design
"""
import warnings # noqa: I001
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from patsy import build_design_matrices, dmatrices
from sklearn.base import RegressorMixin
import xarray as xr
from causalpy.custom_exceptions import (
DataException,
FormulaException,
)
from causalpy.plot_utils import (
ResponseType,
_log_response_type_info_once,
add_hdi_annotation,
plot_xY,
)
from causalpy.pymc_models import PyMCModel
from causalpy.utils import _is_variable_dummy_coded, convert_to_string, round_num
from .base import BaseExperiment
from causalpy.reporting import EffectSummary, _effect_summary_rd
from typing import Any, Literal
LEGEND_FONT_SIZE = 12
[docs]
class RegressionDiscontinuity(BaseExperiment):
"""
A class to analyse sharp regression discontinuity experiments.
:param data:
A pandas dataframe
:param formula:
A statistical model formula
:param treatment_threshold:
A scalar threshold value at which the treatment is applied
:param model:
A PyMC model
:param running_variable_name:
The name of the predictor variable that the treatment threshold is based upon
:param epsilon:
A small scalar value which determines how far above and below the treatment
threshold to evaluate the causal impact.
:param bandwidth:
Data outside of the bandwidth (relative to the discontinuity) is not used to fit
the model.
Example
--------
>>> import causalpy as cp
>>> df = cp.load_data("rd")
>>> seed = 42
>>> result = cp.RegressionDiscontinuity(
... df,
... formula="y ~ 1 + x + treated + x:treated",
... model=cp.pymc_models.LinearRegression(
... sample_kwargs={
... "draws": 100,
... "target_accept": 0.95,
... "random_seed": seed,
... "progressbar": False,
... },
... ),
... treatment_threshold=0.5,
... )
"""
supports_ols = True
supports_bayes = True
[docs]
def __init__(
self,
data: pd.DataFrame,
formula: str,
treatment_threshold: float,
model: PyMCModel | RegressorMixin | None = None,
running_variable_name: str = "x",
epsilon: float = 0.001,
bandwidth: float = np.inf,
**kwargs: dict,
) -> None:
super().__init__(model=model)
self.expt_type = "Regression Discontinuity"
self.data = data
self.formula = formula
self.running_variable_name = running_variable_name
self.treatment_threshold = treatment_threshold
self.epsilon = epsilon
self.bandwidth = bandwidth
self.input_validation()
self._build_design_matrices()
self._prepare_data()
self.algorithm()
def _build_design_matrices(self) -> None:
"""Build design matrices from formula and data, applying bandwidth filtering."""
if self.bandwidth is not np.inf:
fmin = self.treatment_threshold - self.bandwidth
fmax = self.treatment_threshold + self.bandwidth
filtered_data = self.data.query(
f"{fmin} <= {self.running_variable_name} <= {fmax}"
)
if len(filtered_data) <= 10:
warnings.warn(
f"Choice of bandwidth parameter has lead to only {len(filtered_data)} remaining datapoints. Consider increasing the bandwidth parameter.", # noqa: E501
UserWarning,
stacklevel=2,
)
y, X = dmatrices(self.formula, filtered_data)
else:
y, X = dmatrices(self.formula, self.data)
self._y_design_info = y.design_info
self._x_design_info = X.design_info
self.labels = X.design_info.column_names
self.y, self.X = np.asarray(y), np.asarray(X)
self.outcome_variable_name = y.design_info.column_names[0]
def _prepare_data(self) -> None:
"""Convert design matrices to xarray DataArrays."""
self.X = xr.DataArray(
self.X,
dims=["obs_ind", "coeffs"],
coords={
"obs_ind": np.arange(self.X.shape[0]),
"coeffs": self.labels,
},
)
self.y = xr.DataArray(
self.y,
dims=["obs_ind", "treated_units"],
coords={"obs_ind": np.arange(self.y.shape[0]), "treated_units": ["unit_0"]},
)
[docs]
def algorithm(self) -> None:
"""Run the experiment algorithm: fit model, predict, and calculate discontinuity."""
# fit model
if isinstance(self.model, PyMCModel):
# fit the model to the observed (pre-intervention) data
COORDS = {
"coeffs": self.labels,
"obs_ind": np.arange(self.X.shape[0]),
"treated_units": ["unit_0"],
}
self.model.fit(X=self.X, y=self.y, coords=COORDS)
elif isinstance(self.model, RegressorMixin):
self.model.fit(X=self.X, y=self.y)
else:
raise ValueError("Model type not recognized")
# score the goodness of fit to all data
self.score = self.model.score(X=self.X, y=self.y)
# get the model predictions of the observed data
if self.bandwidth is not np.inf:
fmin = self.treatment_threshold - self.bandwidth
fmax = self.treatment_threshold + self.bandwidth
xi = np.linspace(fmin, fmax, 200)
else:
xi = np.linspace(
np.min(self.data[self.running_variable_name]),
np.max(self.data[self.running_variable_name]),
200,
)
self.x_pred = pd.DataFrame(
{self.running_variable_name: xi, "treated": self._is_treated(xi)}
)
(new_x,) = build_design_matrices([self._x_design_info], self.x_pred)
self.pred = self.model.predict(X=np.asarray(new_x))
# calculate discontinuity by evaluating the difference in model expectation on
# either side of the discontinuity
# NOTE: `"treated": np.array([0, 1])`` assumes treatment is applied above
# (not below) the threshold
self.x_discon = pd.DataFrame(
{
self.running_variable_name: np.array(
[
self.treatment_threshold - self.epsilon,
self.treatment_threshold + self.epsilon,
]
),
"treated": np.array([0, 1]),
}
)
(new_x,) = build_design_matrices([self._x_design_info], self.x_discon)
self.pred_discon = self.model.predict(X=np.asarray(new_x))
# ******** THIS IS SUBOPTIMAL AT THE MOMENT ************************************
if isinstance(self.model, PyMCModel):
self.discontinuity_at_threshold = (
self.pred_discon["posterior_predictive"].sel(obs_ind=1)["mu"]
- self.pred_discon["posterior_predictive"].sel(obs_ind=0)["mu"]
)
else:
self.discontinuity_at_threshold = np.squeeze(
self.pred_discon[1]
) - np.squeeze(self.pred_discon[0])
# ******************************************************************************
def _is_treated(self, x: np.ndarray | pd.Series) -> np.ndarray:
"""Returns ``True`` if `x` is greater than or equal to the treatment threshold.
.. warning::
Assumes treatment is given to those ABOVE the treatment threshold.
"""
return np.greater_equal(x, self.treatment_threshold)
[docs]
def summary(self, round_to: int | None = None) -> None:
"""
Print summary of main results and model coefficients
:param round_to:
Number of decimals used to round results. Defaults to 2. Use "None" to return raw numbers.
"""
print("Difference in Differences experiment")
print(f"Formula: {self.formula}")
print(f"Running variable: {self.running_variable_name}")
print(f"Threshold on running variable: {self.treatment_threshold}")
print("\nResults:")
print(
f"Discontinuity at threshold = {convert_to_string(self.discontinuity_at_threshold)}"
)
print("\n")
self.print_coefficients(round_to)
def _bayesian_plot(
self,
round_to: int | None = 2,
response_type: ResponseType = "expectation",
show_hdi_annotation: bool = False,
**kwargs: dict,
) -> tuple[plt.Figure, plt.Axes]:
"""Generate plot for regression discontinuity designs.
Parameters
----------
round_to : int, optional
Number of decimals used to round results. Defaults to 2.
Use None to return raw numbers.
response_type : {"expectation", "prediction"}, default="expectation"
The response type to display in the HDI band:
- ``"expectation"``: HDI of the model expectation (μ). This shows
uncertainty from model parameters only, excluding observation noise.
Results in narrower intervals that represent the uncertainty in
the expected value of the outcome.
- ``"prediction"``: HDI of the posterior predictive (ŷ). This includes
observation noise (σ) in addition to parameter uncertainty, resulting
in wider intervals that represent the full predictive uncertainty
for new observations.
show_hdi_annotation : bool, default=False
Whether to display a text annotation at the bottom of the figure
explaining what the HDI represents. Set to False to hide the annotation.
**kwargs : dict
Additional keyword arguments.
Returns
-------
tuple[plt.Figure, plt.Axes]
The matplotlib figure and axes.
"""
# Log HDI type info once per session
_log_response_type_info_once()
# Select the variable name based on response_type
var_name = "mu" if response_type == "expectation" else "y_hat"
fig, ax = plt.subplots()
# Plot raw data
sns.scatterplot(
self.data,
x=self.running_variable_name,
y=self.outcome_variable_name,
c="k",
ax=ax,
)
# Plot model fit to data
h_line, h_patch = plot_xY(
self.x_pred[self.running_variable_name],
self.pred["posterior_predictive"][var_name].isel(treated_units=0),
ax=ax,
plot_hdi_kwargs={"color": "C1"},
)
handles = [(h_line, h_patch)]
labels = ["Posterior mean"]
# create strings to compose title
title_info = f"{round_num(self.score['unit_0_r2'], round_to)} (std = {round_num(self.score['unit_0_r2_std'], round_to)})"
r2 = f"Bayesian $R^2$ on all data = {title_info}"
percentiles = self.discontinuity_at_threshold.quantile([0.03, 1 - 0.03]).values
ci = (
r"$CI_{94\%}$"
+ f"[{round_num(percentiles[0], round_to)}, {round_num(percentiles[1], round_to)}]"
)
discon = f"""
Discontinuity at threshold = {round_num(self.discontinuity_at_threshold.mean(), round_to)},
"""
ax.set(title=r2 + "\n" + discon + ci)
# Intervention line
ax.axvline(
x=self.treatment_threshold,
ls="-",
lw=3,
color="r",
label="treatment threshold",
)
ax.legend(
handles=(h_tuple for h_tuple in handles),
labels=labels,
fontsize=LEGEND_FONT_SIZE,
)
# Add HDI type annotation to the title
if show_hdi_annotation:
add_hdi_annotation(ax, response_type)
return (fig, ax)
def _ols_plot(
self, round_to: int | None = None, **kwargs: dict
) -> tuple[plt.Figure, plt.Axes]:
"""Generate plot for regression discontinuity designs."""
fig, ax = plt.subplots()
# Plot raw data
sns.scatterplot(
self.data,
x=self.running_variable_name,
y=self.outcome_variable_name,
c="k", # hue="treated",
ax=ax,
)
# Plot model fit to data
ax.plot(
self.x_pred[self.running_variable_name],
self.pred,
"k",
markersize=10,
label="model fit",
)
# create strings to compose title
r2 = f"$R^2$ on all data = {round_num(float(self.score), round_to)}"
discon = f"Discontinuity at threshold = {round_num(self.discontinuity_at_threshold, round_to)}"
ax.set(title=r2 + "\n" + discon)
# Intervention line
ax.axvline(
x=self.treatment_threshold,
ls="-",
lw=3,
color="r",
label="treatment threshold",
)
ax.legend(fontsize=LEGEND_FONT_SIZE)
# TODO: have to convert ax into list because it is somehow a numpy.ndarray
return (fig, ax)
[docs]
def effect_summary(
self,
*,
direction: Literal["increase", "decrease", "two-sided"] = "increase",
alpha: float = 0.05,
min_effect: float | None = None,
**kwargs: Any,
) -> EffectSummary:
"""
Generate a decision-ready summary of causal effects for Regression Discontinuity.
Parameters
----------
direction : {"increase", "decrease", "two-sided"}, default="increase"
Direction for tail probability calculation (PyMC only, ignored for OLS).
alpha : float, default=0.05
Significance level for HDI/CI intervals (1-alpha confidence level).
min_effect : float, optional
Region of Practical Equivalence (ROPE) threshold (PyMC only, ignored for OLS).
Returns
-------
EffectSummary
Object with .table (DataFrame) and .text (str) attributes
"""
return _effect_summary_rd(
self,
direction=direction,
alpha=alpha,
min_effect=min_effect,
)